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Abstract

The game-theoreticfieldofCOllectiveINtelligence(COIN) concernsthedesignofcomputer-

based playersengaged ina non-cooperativegame so thatasthoseplayerspursuetheirself-

interests,a pre-specifiedglobalgoalforthecollectivecomputationalsystem isachieved"asa

side-eRect'.PreviousimplementationsofCOIN algorithmshave outperformedconventional

techniquesby up toseveralordersofmagnitude,on domains rangingfrom telecommunica-

tionscontrolto optimizationin congestionproblems. Recent mathematical developments

have revealedthatthesepreviouslydevelopedgame-theory-motivatedalgorithmswere based

on onlytwo ofthe threefactorsdeterminingperformance.Considerationofonly the third

factorwould insteadlead toconventionaloptimizationtechniqueslikesimulatedannealing

that have littleto do with non-cooperativegames. In thispaper we presentan algorithm

based on allthreeterms at once. This algorithmcan be viewed as a way to modify simu-

latedannealingby recastingitas a non-cooperativegame, with each variablereplacedby a

player.Thisrecastingallowsustoleveragethe intelligentbehaviorofthe individualplayers

to substantiallyimprove the explorationstepofthe simulatedannealing.Experiments are

presenteddemonstratingthatthisrecastingimprovessimulatedannealingby severalorders

ofmagnitude forspinglassrelaxationand bin-packing.

1 INTRODUCTION

There are two general types of distributed systems that are found in nature and that researchers

have translated into computational algorithms for function maximization. The first is exemplified

by Neo-Darwinian natural selection, which has been translated into genetic algorithms (GA's) [5].

The function G maximized in these distributed systems takes as argument any single one of the

system's variables. (Each of those variables is viewed as a "genome", with G of a genome being
the "fitness" of the "phenotype" induced by that genome.)

Whereas systems of this first type have a "narrow G", in the second type of distributed

system the function G being optimized is "wide", taking the state of the entire distributed

system as its argument. In some such distributed systems it is only in the crudest sense that
the individual variables can be viewed as players in a non-cooperative game. Examples include

simulated annealing (SA [13]) and swarm intelligence [1], inspired by spin relaxation in physics

and eusocial insect colonies, respectively.

In other distributed systems that have a wide G the value of each of the individual variables



goinginto G is set by a player engaged in an over-arching non-cooperative game where each

player r/is trying to maximize its associated payoff utility function go' Roughly speaking, such
collective systems work when the utility functions of the individual variables/players are all

"aligned" with the world utility G. Under these circumstances, as the individual players pursue

their self-interests, the global goal for the full Collective of maximizing G is achieved "as a side-

effect". The primary naturally-occurring analogues of such collectives are economic institutions

where the players are human beings, e.g., auctions and clearing of markets. In the computational

translations of such systems the players are computer programs [20, 4, 12].

The "COllective INtelligence" (COIN) framework concerns the design of such collectives.

In particular, it addresses the issue of how to generate from a provided G the set of utilities

{g0} that have optimal signal/noise for each player r] while also having the property that as
the individual players maximize those utilities, G also gets maximized. This work on design
of collectives can be viewed as an extension of mechanism design [9] beyond human economics,

to include concern for signal-to-noise ratio in the payoff functions and off-equilibrium behavior,

and to allow far more freedom in choice of the go than exists with human players (for example

to encompass computational systems in which the issue of incentive compatibility is moot),

and also to encompass arbitrary G and arbitrary dynamics of the system. Applications of this

framework on problems from routing in telecommunication networks [21, 24] to congestion

problems [25] have resulted in substantial performance improvement over conventional techniques

that do not consider issues like signal-to-noise. Typically as the size of the collective grows, such

improvements reach several orders of magnitude.

Recent mathematical developments have shown that the previously developed COIN algo-

rithms for design of collectives were based on only two of the three factors determining perfor-

mance at maximizing G. Consideration of only the third factor would instead lead to conventional

wide-G systems like simulated annealing that have little to do with non-cooperative games. Con-
sideration of all three terms at once therefore would result in an algorithm that combines the

two types of wide-G function maximization system, with naturally-occurring analogues of human

economics and statistical physics, respectively.

In this paper we present such an algorithm. Because of its similarity to (certain aspects of)

how human corporations are run, we call it the Computational Corporation (CoCo) algorithm.

Roughly speaking, it works by modifying the exploration step of simulated annealing by having
the new values of the variables set by the moves of intelligent players in a non-cooperative game.

Like simulated annealing, the computational corporation algorithm is intended not to give the

best possible performance in all problem domains -- an algorithm laboriously tailored for a

particular domain will invariably perform best for that domain [23]. Rather like other algorithms

related to naturally-occurring distribution systems, the computational corporation algorithm is

intended as a powerful and broadly applicable "off-the-shelf" algorithm.

We present experiments demonstrating that the computational corporation algorithm out-

performs simulated annealing by several orders of magnitudes for spin glass relaxation and bin-

packing. In the spin glass domain CoCo converges to a given value of G over two orders of

magnitude faster than does SA, with far better scaling behavior (the ratio of their convergence

speeds increased exponentially with the size of the problem). In the bin packing problem, both
CoCo and conventional COIN algorithms significantly outperform SA (up to three orders of mag-

nitude faster convergence). CoCo achieves the optimum solution in a higher percentage of the

runs (82 % vs. 56 %) than does the COIN algorithm, and provides better "worse case" properties

(i.e., the worst result obtained through CoCo is better than the worst result obtained through

COIN).



2 The Mathematics of Collective Intelligence

The full formalization of the COIN framework extends significantly beyond what is needed for

this paper. 1 The restricted version needed here starts with an arbitrary vector space Z whose

elements _ give the state of all the variables in the collective.

We wish to search for the _ that maximizes the provided world utility G. In addition to G

we are concerned with payoff utility functions {gn}, one such function for each variable/player

7/. We use the notation 31 to refer to all players other than r/.

We will need to have a way to "standardize" utility functions so that the numeric value they

assign to a ( only reflects their ranking of ¢ relative to certain other elements of Z. We call such

a standardization of utility U for player rl the "intelligence for rl at _ with respect to U". Here
we will use intelligences that are equivalent to percentiles:

(1)

where the subscript on the (normalized) measure indicates it is restricted to ¢' sharing the same

non-r/ components as (, and where the Heaviside function Q is defined to equal 1 when its

argument is greater than or equal to 0, and to equal 0 otherwise. Note that an intelligence value

is always between 0 and 1.

Our uncertainty concerning the behavior of the system is reflected in a probability distribution

over Z. Our ability to control the system consists of setting the value of some characteristic of

the collective, e.g., setting the payoff functions of the players. Indicating that value by s, our
analysis revolves around the following central equation for P(G [ s), which follows from Bayes'
theorem:

P(G l s) =/deaP(alea, s) / degP(ea I  g,s)P( 9 Is), (2)

where "eg" is the vector of the intelligences of the players with respect to their associated payoff
functions, and "ca" is the vector of the intelligences of the players with respect to G.

If we can choose s so that the third term in the integrand is peaked around vectors ea all of

whose components are close to 1, then we have likely induced large (payoff function) intelligences.

If we can also have the second term be peaked about eG equal to ea, then eG will also be large.

Finally, if the first term in the integrand is peaked about high G when ea is large, then our choice

of s will likely result in high G, as desired.

Intuitively, it is in the third term that the requirement that payoff functions have high "signal-

to-noise" (an issue not considered in conventional work in mechanism design) arises. It is in the

second term that the requirement that the payoff functions be "aligned with G" arises. Previously

developed COIN algorithms concentrated on these two terms. Finally, conventional function

maximization techniques like simulated annealing instead are concerned with having term 1 have
the desired form.

It is the simultaneous concern for all three of these terms that underlies the CoCo algorithm.

To present that algorithm we must first review some COIN results on how to simultaneously set
terms 2 and 3 to have the desired form.

The second term in Eq. 2 can be addressed by requiring that the collective be factored,

which means that eg equals ea exactly for all 6. In game-theory language, the Nash equilibria of

1That framework encompasses, for example, arbitrary reassignments of how the various subsets of the variables
comprising the collective are assigned to players. It also encompasses modification of the players' information sets
(i.e., modification of inter-player communication). See [22].



afactoredcollectivearecriticalpointsof G. In addition to this desirable equilibrium behavior,

factored collectives incorporate appropriate off-equilibrium incentives to the players. As a trivial

example, any "team game" in which all the payoff functions equal G is factored [8]. However

team games often have very poor forms fcrr term 3 in Eq. 2, forms which get progressively worse

as the size of the collective grows. This is because for such payoff functions player each r/will

usually confront a very poor "signal-to-noise" ratio in trying to discern how its actions affect its

payoff g, = G, since so many other players' actions affect G and therefore affect g_.

Previous COIN algorithms were based on varying the payoff functions {g,} to optimize the

third term, subject to the requirement that the system be factored. To understand how those

algorithms work, given a measure d/z(_), define the opacity at _ of utility U as:

Iu(0 - ¢.)1au(C:rl, s) _ dC'J(C'] C)_U-_ v(cn,(_)[ '
(3)

where J is defined in terms of the underlying probability distributions. 2

The denominator absolute value in the integrand in Eq. 3 reflects how sensitive U(¢) is to

changing (_. In contrast, the numerator absolute value reflects how sensitive U(_) is to changing

¢'n- So the smaller the opacity of a payoff function gn, the more gn(¢) depends only on the
move of player r/, i.e., the better the associated signal-to-noise ratio for 77. Intuitively then, lower

opacity means it is easier for _ to achieve a large value of its intelligence.

To formalize this, choose a measure d# defining opacity that is the same as the one defining

intelligence. Then expected opacity bounds how close to 1 expected intelligence can be [22]:

E(eu(( : 71) I s) < 1 - K, where

K < E(f_u (_ :_7, s) j s). (4)

In practice the bounds in this result are usually tight.

Next define a difference utility as one of the form:

u(0 = a(¢) - r(/(¢)) (5)

where F(f) is independent _. In general it is not possible for a collective both to be factored

and to have zero opacity for all of its players. However any difference utility is factored [22]. In

addition, under usually benign approximations, E(f_ [ s) is minimized over the set of difference

utilities by choosing:

F(f(O) = E(G[ ¢-0, s), (6)

up to an overall additive constant. We call the resultant difference utility the Aristocrat utility

(AU), loosely reflecting the fact that it measures the difference between a player's actual action

and the average action.

If possible, we would like each player r/to use the associated AU as its payoff function. This
is not always feasible however. The problem is that to evaluate the expectation value defining

its AU each player needs to evaluate the current probabilities of each of its potential actions.

However if the player then changes its payoff function to be the associated AU it will in general

substantially change its ensuing behavior those probabilities. (The player now wants to choose

2Writing it out in full, J(_' j _) -- J(_,_' [ _-n,s)/P(_ [ _,s), with'.

P(¢n J¢n,s)P(_ I <,_,s),u(¢_) P(¢_ I ¢%,s)P(_, I ¢_,s)tt(¢,)
s(¢., ¢' J¢'_, s) = +2 2



actionsthat maximizea differentfunctionfromtheoneit wasmaximizingbefore.)In other
words,it will changethe probabilitiesof its actions,whichmeansthat its newpayofffunction
is in factnot the AU for its actualprobabilities.Therearewaysaroundthisself-consistency
problem,but in practiceit is ofteneasierto bypasstheentireissue,by givingeach_ a payoff
functionthat doesnot dependontheprobabilitiesof _'sownactions.

Onesuchpayofffunctionis theWonderful Life Utility (WLU).TheWLUfor player_ is
parameterizedbyapre-fixedclampingelementCL_chosenfromamong_'spossibleactions:

WLU, 7 - G(_) - G(_, CL,7) . (7)

WLU is factored no matter what the choice of clamping element. Furthermore, while not match-

ing the low opacity of AU, WLU usually has far better opacity than does a team game.

In many circumstances one can meaningfully interpret a particular choice of clamping element

for player _ as equivalent to a "null" action for player _, equivalent to removing that player from

the system. (Hence the name of this payoff function -- cf. the Frank Capra movie.) For such a

clamping element assigning the associated WLU to _? as its payoff function is closely related to

the economics technique of "endogenizing a player's externalities" [9]. However it is usually the

case that using WLU with a clamping element that is as close as possible to the expected action

defining AU results in far lower opacity than does clamping to the null action. Accordingly,

use of such an alternative WLU almost always results in far better values of G than does the

"endogenizing" WLU.

Typically, COINs in which the payoff functions are WLU or AU not only far outperform

team games, but also conventional function maximization techniques like simulated annealing.

However note that even if the payoff functions result in the collective's having every component

of the vector ec equal 1 -- the best terms 2 and 3 can be -- nothing in Eq. 2 precludes a

poor value for G(_). This is because having all those intelligences equal 1 only means that the
collective is at a local maximum of G.

This potential shortcoming is reflected in the first term in Eq. 2, a term that does not directly
depend on the choice of the players' payoff functions. Crudely speaking, what that term reflects

is the propensity of the system to get stuck in a local maximum. Accordingly, one can use

many of the conventional exploration/exploitation function maximization techniques like simu-
lated annealing to induce a good form for that term. At each iteration, the exploration step is

determined by the actions chosen by the players, rather than by using one of the more "blind"

sampling schemes that are traditionally employed. The exploitation step though is the same as
in the traditional formulation of the algorithm. In this way all three terms of Eq. 2 will have a

desired form, and the induced G should be large.

In its concern for all three terms this algorithm bears many similarities to well-run modern hu-
man corporations, with G the "bottom line" of the entire corporation, the players 17identified with

the employees of the corporation, and the associated g_ being the employees' performance-based
compensation packages. For example, for a "factored corporation", each employee's compen-

sation package function contains incentives designed so that the better the employee performs

their job, the better the bottom line of the corporation. In addition, if the compensation pack-

ages are "low opacity", the employees will have a relatively easy time discerning the relationship

between their behavior and their compensation. Finally, the centralized exploitation process in

CoCo is similar to the centralized decision-making of upper management that tries to determine

whether to abandon or stick with a particular set of behaviors by the employees. It is due to

these similarities that we call this algorithm the computational corporation algorithm.



3 Experiments

The purpose of this section is to show both the wide applicability of CoCo, and to provide a

comparative analysis showing its superiority over Simulated Annealing. For this purpose we

chose two diverse domains of applications:

• Minimum energy configurations for binary spin glasses (Theoretical physics)

• Bin packing (Industrial engineering and resource allocation)

In the experiments reported below, for simulated annealing, each agent (spin, item) had a

25% probability of changing its actions (i.e., on the average, the new state differed by 25% from

the previous state). The annealing schedule consisted of reducing the temperature (multiply by

0.9) after a fixed number of time steps had elapsed (500 for spin glasses (on convergence runs
reported in the text), 100 for bin packing). The players in the CoCo algorithm were handicapped

by using perhaps the simplest possible reinforcement learning algorithm [6, 18, 24, 25]. The AU

version of CoCo simply assumed that each agent rj had a uniform probability distribution over

its possible moves. Unless otherwise specified, the clamping elements in the COIN versions were

set to 6 (vector of zeroes).

3.1 Binary Spin Glasses -- The 2-D Ising Model

Spin glasses have traditionally been viewed as one of the pillars of statistical mechanics and

the preferred comparative domain for analyzing the efficacy of various stochastic relaxation and

optimization techniques [14]. There are many optimization methods developed precisely for

solving the spin glass problem [14] and in this article we axe not aiming to improve upon such

specialized methods. Rather, we use this domain to compare two multi-purpose optimization

algorithms, namely CoCo and simulated annealing.

In this article, we restrict our attention to the 2-D Ising Model, i.e., a special spin glass where

each site can occupy only one of two possible states - spin up or down in ferromagnetism, and

empty or occupied in modeling liquid/gas phase transition. Because exact algorithmic solutions

for the two dimensional Ising model have been already developed, 2-D binary spin glasses are

considered a standard benchmarking tool [14]. Briefly, this problem consists of (a four connected)

two dimensional grid with periodic boundary conditions. Each site sk can have one of two spins

(here taken to be 1 or -1). The link between any two sites, li,j, is an arbitrary value (here,

without loss of generality restricted to between -1 and 1). The goal is to find the states of the

spin glass such that the global energy defined by:

_ Si.Sj.li,j

i j

is minimized. It is easy to show that this problem has many local minima, and for any reasonable

sized grid, examining all possible states quickly becomes an intractable problem [14] (2 n states

for n sites).

In modeling this binary grid, we mapped each site _k as an independently active agent, with
its' chosen action at time t represented by the binary choice Sk,t (i.e., the choice of spin up or

spin down). Each agent selects its next action/state using the COIN/CoCo framework.

Figure l(a) shows the performance (averaged over 50 runs) of Simulated Annealing vs. AU
CoCo and AU COIN for a 10xl0 Ising model. As it can be seen, CoCo far outperforms Simulated

Annealing. Comparing the exploration steps of CoCo and simulated annealing shows the advan-

tage gained through CoCo. Notice that the gap between the exploration and exploitation steps
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Figure 1: (a) Performance (left); (b) Scaling (right) for the spin glass problem.

of CoCo are far narrower than that of simulated annealing, emphasizing the "guided" aspect of

the search used by CoCo.

Comparing the performance of SA to that of CoCo, one interesting question that arises is

whether SA will reach the CoCo results given sufficient time, and if so, how much longer will it

take to do so. On the 10xl0 grid discussed above, the best simulated annealing schedule used

required two orders of magnitude longer to convergence, and even then failed to reach the CoCo

results 3. As the scaling runs discussed below indicate, one expects this discrepancy to increase

with the size of the problem.

A final noteworthy result is the increased scalability obtained through CoCo. Figure l(b)

shows the ratio of the the global utility achieved using simulated annealing to the global utility

achieved through CoCo as a function of the grid size. The exponential decline in performance

clearly shows that the larger the size of the binary spin glass grid, the greater the impact of
CoCo.

3.2 Bin-Packing

The second problem we investigate is the bin packing problem [7]. This problem consists of a list

of items (al,a2,.. • ,an) and a supply of n bins, Bi, with capacity C each. The size of each item

is given by a function s(ai) which satisfies 0 < s(ai) <_ C, Vi. The problem consists of packing

the items into a minimum number of bins, while ensuring that the contents of no bin exceeds C.

More precisely, the problem consists of minimizing:

$2

G = _ IB,, subject to: Z s(a,) < C (8)
i=1 iEB,

where IB, is the "content-indicator" function for Bi, and is 0 if the bin is empty and 1 otherwise.

This problem has many real world application ranging from loading trucks subject to weight

limitations [7] to distributing jobs on a computer network where each processor has limited

resources (e.g., memory, CPU cycles) [16]. The bin-packing problem is known to be NP-

complete [10], and many approximate algorithms were developed to address it [3, 7]. In this

section we study how the COIN framework can be applied to this domain.

3An optimistic extension of the SA performance under ideal annealing schedules projects SA reazhing CoCo

results 500 times more slowly than CoCo in this relatively small problem.



In these experiments the agents use a "soft" version of the global utility function given by:

if ,<c
Gs°ft = _,n__ 1 (xi- c) 2 if x, > C '

(9)

where xi = Y':_ieB, s(ai) gives the total size of all items in bin i. This function has two minima
(at 0 and C) and provides two benefits: First, by discouraging "illegal" solutions due to the

large penalty incurred by exceeding C in any one bin, it greatly reduces the need to verify that a

solution satisfies the constraints after that solution is found. Second, it provides the system with

a better "signal" and encourages bins to be closer to full or empty. All algorithms (including

simulated annealing) use this soft G function, but they are all evaluated based on the provided

global reward (Eq 8).

In these experiments, all the algorithms had the same number of iterations (1000 in this

case) and the results we report below averaged over 50 runs 4. Note that COIN-based systems

used the first 200 steps to generate their "learning" data, and thus took random actions during
this interval. In simulated annealing, the proposal distribution was slowly modified to generate

solutions that differed in fewer items than the current solution as the experiment progressed. The

annealing schedule consisted of reducing the Boltzmann temperature at intervals of 100 steps.

Algorithms

CoCo WLU
CoCo TG

COIN WLU

COIN TG

Sim Anneal

4- 0.05

14.28 4- 0.16

4.46 + 0.08

15.76 + 0.23

15.67 4- 0.18

Table 1: Performance at t = 1000

Average _ Reached Optimal

82 %
0%

56 %

1_ 0%o%

Table 1 summarizes the results of the various algorithms for the bin packing problem. The

average performance of simulated annealing and team game COIN were statistically indistin-

guishable. Neither fared well, with the worst solution in both cases being random. CoCo team

game performed slightly better, but the real gains were not achieved until the WLU private util-
ity function was used 5. Though the CoCo WLU slightly outperformed the straight COIN WLU

(lower average and higher percentage of finding the optimal solution) both of these algorithms

were significantly superior to the other three.

Although the results reported above show the superiority of the WLU-based algorithms, they

do not fully reflect the advantages of COIN-based systems. One aspect of the algorithm perfor-
mance that is of paramount importance in optimization problems is the speed of convergence.

The two WLU-based algorithms both converged to near optimal solutions within the first 50 steps

following the learning period. Even projecting the team game CoCo and simulated annealing

performances linearly s they were two and three orders of magnitude slower, respectively, than

WLU-based algorithms.

4The errors in the mean are reported as plus/minus in the table, and omitted in the graph because the resulting
error bars are too small to see.

5For this problem, there was no difference (statistically) between the performance of W"LU and AU. Therefore
to streamline the comparative process, we report only WLU results.

6This favors TG and SA since in reality their convergence rate drops.



4 Conclusion

There are three general types of t)arallel systems found in nature that can be viewed as engaging

in maximization of a function G. These axe exemplified by neo-Darwinian natural selection

(for G that take any single one of the elements of the parallel system as an argument), spin

glass relaxation (for G that take the entire system as argument), and clearning of markets in

economics relaxation (for G that take the entire system as argument and in which the overall

parallel system can be viewed as a non-cooperative game). All three types of system have been

translated into computational algorithms, exemplified by genetic algorithms, simulated annealing,
and computational markets, respectively.

The Collective Intelligence framework can be viewed as an extension of conventional economics-

based systems of the third type, to reflect signal-to-noise issues and greater freedom in modifying

the individual players than exist in economies of human beings. It has traditionally been applied

only to systems of the third type. Recent mathematical advances in that framework have shown

that those traditional COIN algorithms only account for two of the three factors determining

performance. The third factor can be accounted for by integrating the COIN with a technique

of the second type, like simulated annealing. Intuitively, such an integrated system, which we

call a computational corporation, can be viewed as conventional simulated annealing modified by

having the value of each variable in the exploration step of the SA be set by a (computer-based)

player in an associated non-cooperative game. Doing this allows the leveraging of the intelligence

of such players to improve the exploration, and thereby improve the performance.

We present experiments demonstrating that the computational corporation algorithm out-

performs simulated annealing by several orders of magnitudes for spin glass relaxation and bin-

packing. In the spin glass domain CoCo converges to a given value of G over two orders of

magnitude faster than does SA, with far better scaling behavior (the ratio of their convergence
speeds increased exponentially with the size of the problem). In the bin packing problem, both

CoCo and conventional COIN algorithms significantly outperform SA (up to three orders of

magnitude faster convergence).
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